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Abstract

Wave attractors are specific and complex flows, formed by a self-focused internal or inertial waves. In linear regimes they
appear as clear coherent structures of a certain shape; in non-linear ones the intensive formation of the secondary waves occurs
which distort the coherent structure. Their presence, along with the huge localization of the flow, makes one to select
thoroughly the post-processing methods in such flows (including energy characteristic calculation, spectral investigation,
visualization etc.). In the existing articles, these methods vary from work to work. The goal of this paper is to consider
different method for processing the flow data applied to wave attractors in order to compare their particularities and to reveal
the best practice for the further using.
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AHHOTanMsA

Bo/HOBBIE aTTPaKTOPBI TIPEJCTaB/SIOT COO0W crieludrUecKre TeueHHsi CO CIOXKHON CTPYKTYpOH, c)OPMHUPOBAaHHLIE B
pe3y/ibTarte CaMO(OKYCHPOBKHA BHYTPEHHHMX WM WHEpIMOHHBIX BOMH. B JIMHEHHBIX pe)XrMMaxX OHU TIPeJCTaBJSIOT COOOM
KOTEPEHTHYI0 CTPYKTYPY OMNpe/ie/ieHHOW (hOPMBI; B HEJIMHEHHBIX MPOUCXOAWUT WHTEHCHBHOE 00pa30BaHMe BTOPUYHBIX BOJH,
KOTOpble UCKa)KaloT 3Ty CTPYKTYpy. VIX Ha/mMuMe Hapsily C CUIBHOM JIOKar3alyiell TeueHNs 3acTaB/sieT TILaTe/IbHO OXOAUTD
K BbIOOpDy MeTofjoB 00pabOTKM [/ Takoro poJa TeueHMH (BK/IIOuUass BBIUMC/IEHWE SHEPreTHYeCKUX XapaKTepHCTUK,
CIIeKTpaJIbHBIX METOZIOB U T.J.). B cymiecTByrommx pabotax 3TH METOABI Pa3/IM4atoTCs B 3aBUCUMOCTH OT KOHKDETHOM CTaThH.
Llenbl0  HACTOSIILIETO WICC/IEOBAHUS  SIBSETCS PAacCMOTPeHHMe paslWuHbIX MeTofoB 00pabOTKM [JAaHHBIX TeueHHi
MPUMEHUTENEHO K BOJIHOBBIM aTTPAaKTOpaM C LeJIbl0 CPaBHEHUs WX OCOOeHHOCTell W Ompefe/ieHds HaWIydlIuX ZJis
JlaJIbHeUIIIero UCIiob30BaHus.

KimoueBble c/10Ba: BOJTHOBBIE aTTPAKTOPhl, METOZ0/IOTHS, UNC/IEHHbIE METO/bI.

Introduction

A wave attractor is a result of internal/inertial waves self focusing [1]. The main feature of the wave attractor is the huge
ratio between the amplitude on it and that of the wave-maker [2], [3], which causes the wave instability at the respectively
small wave-maker amplitudes [4]. Such flows are characterized by the great energy accumulation and specific spectrum caused
by the wave instability appeared in these flows [5] which are frequently calculated and investigate qualitatively as well as
quantitatively, which means they should be, on the one hand, precise enough to reflex the complex structure of the flow, and on
the other hand, be general-purpose to require minimal setup and to have clear requirements to be applied (such as signal point
number etc.). However, there appear to be the variety of methods, changing from work to work, that requires the thorough
investigation and comparison of these technical methods themselves.

In this investigation, the corresponding review of the methods used for wave-attractors flow processing will be conducted.
For this purpose, the numerical simulation result will be used following [2], [6], [7], [10]; 2D formulation, whose accuracy is
shown in [2], [7], [9], [11], is applied to save computational resources.

Research methods and principles

The simulation is conducted in open-source package Nek5000 [12], using spectral-element approach for high-order
simulation, which is validated for wave-attractor flow simulation [10], [13], [14], [15]. For the internal waves propagation, the
stratification is required which is created by dissolved salt stratification in water. The following system of equations is solved:
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These are Navier-Stokes equation in Boussinesq approximation, dissolved salt transport and continuity equation. Here P
denotes the pressure excluding the hydrostatic part &Pm , ( § is the gravity acceleration modulus), P = P, + Ps is the
full density consisted of Pm (fresh water density) and Ps (the solution density increases due to salt admixture); 4, is the
salt diffusivity coefficient. During the simulation, Schmidt number Sch =v/A; =700 .

For the focusing, internal waves require a slope [1]; thus, the minimal geometry for wave attractors study is a trapezium, as
shown on Fig.1. This study will mainly use the trapezium-shaped domain except the case with mid-depth plateau, whose
geometry will be shown in what follows.

Q.

L.

X

Figure 1 - Domain principle outline
DOT: https://doi.org/10.60797/COMP.2026.9.2.1

To generate internal waves, wave-maker is used in the form of an oscillating boundary [16], [17], [18]. For small
oscillation amplitudes a << H it is reasonable to use a velocity condition instead of the moving-shape domain. In what
follows, we used wave maker on the upper boundary, with the oscillation dependency U;Um(xa 1) = asin(wgt) sin(2zx /L)

. Note that its integral is $ which is required to fit the mass conservation law. Here and forward, Ty =27/w, is wave-
maker period (used for time non-dimensionalization), f = @/(2x) .

The other specific parameters (like viscosity, startification profile, wave-maker amplitude and frequency etc.) are varied
from case to case; the specific values can be found in the article describing each particular case (the link will be provided in the
corresponding sections).

Main results

3.1. Energy Local Average Calculation

Kinetic energy is one of the most frequently appearing characteristics when discussing wave attractors. Its popularity is
based on its huge values typical for this flow type.

The total kinetic energy is defined as

E=”7mffV<u§+v§)dV (4)

where V' is a domain volume. Even in a linear regime, this value will increase with a wave-maker amplitude @ ; thus,
it is reasonably to consider the relative kinetic energy [19]:

E=E/E,, E,=3p,V(aw)) ()

In wave attractor flows, the E >> | [5], [20], varying from ~ 10 [21]to ~ 1000 [3]. Such huge values are also
considered as indirect evidence of a wave-attractor presence. The more the relative kinetic energy, the higher the energy
accumulation on the attractor, so the instability will appear at lower wave-maker intensities.
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Since both energy and relative energy differ to a constant, their behaviour is the same, and the principles considered in
what follows are applicable to both of them to the same extent.

The energy behaves specifically in time: at the formation process it grows, that reach the saturation, after which begins to
"noise" (it is conditioned by the additional harmonics from the secondary waves). The energy has a tendency to oscillate even
in a linear regime [3], [21], [22] it occurs due to a presence of the standing waves along with the running ones.

To describe the system, the local average value is used (the oscillations are excluded); however, because of the rapid
increase at the beginning and non-linear oscillations, the average obtaining becomes a non-trivial problem. Local average is
required to maintain the following principle properties: to start from zero (as the real kinetic energy) and to not start to oscillate
while the instability develops.
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Figure 2 - Energy behaviour in a non-linear regime (red) with different methods of the local average estimation
DOI: https://doi.org/10.60797/COMP.2026.9.2.2
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Figure 3 - Energy at the attractor fomation time range
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Figure 4 - Energy at the developed instability
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Fig. 2 considers different methods for local average estimation. One of the popular is EMD-filtration [3], [23], [24]. The
signal is decomposed into the automatically-calculated empirical modes, sorted into the frequency-descended order; than the
first several (with the highest frequencies) are neglected:

= = N
E ()= E =3 MP IMFt) (6)

The method does not require special fitting and is governed by the number of filtration modes. The increase of Ngpsp
(making smoother) worsen the start reproducing (near #/Ty — 0 | Fig. 3), and a lack of them leads to oscillations for heavily
non-linear cases (black line on Fig. 4). The optimal filtered modes number Npgj/p for initial range resolution is no more
than 2, for instability oscillations smoothing at least 4 is recommended.

The next idea is the spectral filtration; the higher frequencies of the spectrum are suppressed, and then the inverse
transform is conducted:

Eaug(0) = FFT™ (&(/)FFT(E®) ) @)

The different filter action on a real energy spectrum is represented on Fig. 5; the "box" filter is
w(f)=o (—(f - f thr)) ( 0 is Heaviside step function), shown for the threshold frequency /4, = fo , and the "bell"

f2
T 2%
the narrower filters do not reproduce correctly the initial increase (Fig. 3), the wider ones oscillate at the instability formation
times (Fig. 4). For boxcar filter, f,, < 0.5f( is enough for long-term average, but the growth range will be resolved only
at finr = 1.5fy . For gaussian bell filter type, 6 =2f( is suitable, however, non-zero values at t =( (as shown on
Fig. 3) occurs at any ¢ because of the peculiarities of the filter shape.

one is the gaussian filter w(f)=exp , for bell semiwidth 6 = f o - For both filters, there is the same problem:
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Figure 5 - Energy spectrum with different filtartion
DOL: https://doi.org/10.60797/COMP.2026.9.2.5

The third method is the moving average:

- t+71,/2 —
E (1) = le ft_Tww/z E@®w)dt ®8)

where w(t) isa window with support size 7, used to smoothen the curve. This method can seem to underestimate the
average on the rapid initial growth; however, the correct window size T, selection (Fig. 6) allow to achieve the good initial
reproduction as well as the oscillation suppression (Fig. 7), with optimal T, = 4T{ . The larger ranges lead to failure at the
initial time, the smaller ones tend to oscillate at the instability development times. A specific window type (Hamming,
Blackman, etc.) using turns out to make no influence the result (Fig. 8,9).
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Figure 6 - Energy local average calculation with simple moving average
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Figure 7 - Moving average action at the attractor formation time: the window width influence
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Figure 8 - Window influence on the moving average calculation: formation times
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Figure 9 - Moving average calculation: developed instability
DOI: https://doi.org/10.60797/COMP.2026.9.2.9

3.2. Spectrum Position Influence
The temporal spectra, while calculated for an attractor flow, are investigated in a point; as a representative point, the
attractor's ray middle (Point 4 on Fig. 10) is usually considered [3], [21], [22], [25].
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Figure 10 - Liner attractor regime, v, snapshot and spectrum calculation locations
DOIL: https://doi.org/10.60797/COMP.2026.9.2.10
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Figure 11 - Linear attractor regime, spectra in different locations
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The closer investigation shows that there is no principle difference which point on the ray to considered, as shown on Fig.
11; neither it is for an elongated geometry (Fig. 12,13) from [3]. The difference between the spectra calculated does not exceed
11%.

x107!
S - B
25 4
< ’»ﬁ }k p
= 0 “ L - - -5
T L T T T
0 50 100 150 200 250 300

x, Cm

Figure 12 - Non-linear attractor regime in a large-aspect ration domain, v, snapshot and spectrum calculation locations
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Figure 13 - Spectra in different locations for large-aspect ratio attractor
DOIL: https://doi.org/10.60797/COMP.2026.9.2.13
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For a limited-depth attractor of (n,1) type from work [26], shown on Fig. 14, it is shown that different attractor cells do not
principally differ in spectral terms (Fig. 15), with 6% difference.
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Figure 14 - Attractor in a layer, vy snapshot and spectrum calculation locations
DOI: https://doi.org/10.60797/COMP.2026.9.2.14
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Figure 15 - Attractor in a layer spectra in different locations
DOI: https://doi.org/10.60797/COMP.2026.9.2.15

A bit different situation takes place in case of an attractor with mid-depth peak (Fig. 16,18) from [27]. This attractor differs
from the other ones since it has continuous spectrum; the spectra turn out to be more saturated in the points closer to the walls
(Fig. 17,19) in a non-linear regime, with the difference between them being up to 43%. However, their qualitative properties
remain the same.

10
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Figure 16 - (2,1) linear-regime attractor in a domain with underwater plateau, v, snapshot and spectrum calculation

locations
DOI: https://doi.org/10.60797/COMP.2026.9.2.16
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Figure 17 - Spectra in different locations for attractor in basin with underwater plateau, linear regime

DOI: https://doi.org/10.60797/COMP.2026.9.2.17
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Figure 18 - (2,1) non-linear attractor in a domain with underwater plateau, v, snapshot and spectrum calculation locations
DOI: https://doi.org/10.60797/COMP.2026.9.2.18
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Figure 19 - Spectra in different locations for attractor in basin with underwater plateau, non-linear regime
DOL: https://doi.org/10.60797/COMP.2026.9.2.19

3.3. Spectral Window
To improve the spectrum, windows are often applied. There is a set of windows most frequently used (for normalized

window range from 1 to -1):
- Bartlett: max (1 — |¢], 0)
- Blackman: 0.42 + 0.5 cos(rt) + 0.08 cos(2xt)
- Hamming: 0.54 + 0.46 cos(xt)

1, if 7] <1
0, otherwise

- boxcar:

In fact, they can be approximated accurately enough by one of the Kaiser windows with the corresponding f

parameters:
wp® = 1 (BV1=12) /1o ©

12
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where I is zeroth-order Infeld function (also called modified Bessel function). The higher the f , the narrower is the
window. The comparison between the classical windows and Kaiser ones is shown on Fig. 20, the correspondence between the
window and representation (9) is shown in the Table 1.
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Figure 20 - Different spectral windows
DOIL: https://doi.org/10.60797/COMP.2026.9.2.20

Table 1 - The correspondence between classical window types and parametric Kaiser ones
DOI: https://doi.org/10.60797/COMP.2026.9.2.21

Window Similar to, 8
boxcar 0
Hamming 5
Hanning 6
Blackman 8.6

The main consequence of the window using is the reduction of the "background" (the intervals between the peaks) and the
revealing of the minor peaks, as shown on Fig. 21. This property is useful when one calculates the ratio between different
spectral components; also, the narrow windows eliminate the smooth transition between peak and background, allowing to
determine easily the borders of the peak. Note that the background level for Kaiser with high f is ~ 10~!¢ which is about
machine zero. This means that the further resolution increase is senseless.

The other side of the coin is peaks widening, that may affect the minor peaks resolution when triadic resonance instability
subharmonics are studied [4]; however, since the high-frequency part of the spectrum is considered more frequently [3], [21],
[22], [27], the narrow Kaiser windows for such spectral investigations are preferable.

13
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Figure 21 - Wave attractor spectrum calculated using different windows
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Despite the ability to reveal minor spectral peaks, window filtration should be applied with care. It should be always
remembered that the spectral peaks after the windowing will be widened. As an example, let us consider an attractor in the
two-layered fluid [22] (see shape on Fig. 22). Double spatial Fourier transform represents fe— y spectrogram ( f x,y are
spatial spectral numbers). As the transform is done for the whole domain, it reflexes two principle wave vector directions (for
each layer of stratification, or for each attractor ray inclination angle on Fig. 22). The diagram made with no window
represents these two wave directions (Fig. 23); for the windowing, the wider is the window, the worse are these directions
distinguishable (Fig. 24 and 25). This occurs due to spectral peaks widening which can lead to the fatal consequences in case
of double (spatial) transform. Thus, for the spatial spectra, the widest window is recommended unlike the temporal spectrum.
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Figure 22 - Wave attractor in two-layered stratification (v, Hilbert transform, cm/s)
DOI: https://doi.org/10.60797/COMP.2026.9.2.23
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Figure 23 - f,-f, diagram in two-layered stratification, no window
DOIL: https://doi.org/10.60797/COMP.2026.9.2.24

Figure 24 - f,-f, diagram in two-layered stratification, Kaiser window with

pB=5

DOI: https://doi.org/10.60797/COMP.2026.9.2.25
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Figure 25 - f,-f, diagram in two-layered stratification, Kaiser window with
p=14
DOL: https://doi.org/10.60797/COMP.2026.9.2.26

3.4. Colormap Selection

Wave attractor flows are known to have a specific form of the coherent structure, which is frequently considered as a
marker of a wave attractor presence, and one strives to visualize it [26], [28], [30], [31]. The visualization is most frequently
done by field map plotting a certain value (whether it velocity component, pressure gradient or Hilbert transform amplitude).
The visualization of an attractor is a challenge [4], [26], [28]; thus, the choice of the colormap itself becomes important. The
previous investigation seems to have used the colormap provided defaultly by the instrument they use: works [4], [26], [27],
[31] uses "jet" colormap from matplotlib.pyplot package, investigations [3], [32] provides "hot" colormap preset in Vislt
software [33], article [34] plots field maps with "inferno", [35] includes "bwr" and "hot", [29] prefers "fusion". As one can see,
there is no unity in the question of the colormap selection; neither there exists a work discussing this problem.

The different visualizations are represented on Fig. 26; the plotted is the momentary velocity amplitude. The colormap
labels are the same as in the matplotlib package [36]. For the structure emphasizing (which is most required task), "seismic" or
"hot" will be the preferable option. For the background waves resolution, "turbo" is optimal. The "jet" pattern will be a good
compromise between them. The other colormaps plot the attractor neither bright nor detailed.

The discrete (quantitative) colormaps can also be used for a wave-attractor visualization (Fig. 27). These ones, however,
represent the background instability very poorly, which nevertheless may be useful for the structure visualization. "Accent"
seems to be better for the structure emphasizing, and none of them reveal the background waves.

16
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Figure 26 - A wave-attractor in a weakly-nonlinear regime visualization (|v|, cm/s): continuous colormaps
DOI: https://doi.org/10.60797/COMP.2026.9.2.27
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Figure 27 - A wave-attractor in a weakly-nonlinear regime visualization (|v|, cm/s): discrete colormaps
DOI: https://doi.org/10.60797/COMP.2026.9.2.28

Conclusion

Wave attractors as complex flows require a thorough selection of the methods for their processing. In this article, a number
of methods were discussed. For the energy mean calculation, the best method was found that is stable for the sharp initial
increase as well as for developed instability oscillations. For the spectra, different windows application were discussed and
revealed that different windows should be used for spatial and temporal spectra; the influence of the spectrum spatial position
is investigated for the different setups, found that it is minimal. Additionally, the field map representation is discussed, the
different colormaps are applied, their aspects are shown for the selection in further works.
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